Optimization

Underground Transit RF Design & Optimization Considerations

Introduction: The smartphone revolution spanning in first two decades of 21st century has changed the way subscribers consume data on mobile devices. The very definition of mobile device has expanded to include tablets, wearables and other connected accessories including machine to machine. With Internet of Things (IoT) being major growth area for data demand, the coverage and capacity requirements of wireless networks will grow for foreseeable future.

Work Within the Limits of LTE Geolocation

The idea and development of tools around wireless customers events and measurements is rapidly moving forward. Despite the fears of big brother watching, which any technology has the ability to be used for less than good means, geolocation data of subscribers has the ability to truly revolutionize how wireless operators do business. The concept of being able to know where everything in your network occurs at any one time allows for better design and optimization of the network as well as targeted marketing.

Approaching Hi-Cap Venue DAS Optimization

Introduction: Over the years wireless network traffic has exploded. To meet this demand operators have focused efforts toward building (Distributed Antenna System) DAS Systems at high capacity venues. For a single event like Super Bowl, a stadium may have over a terabyte of data passing through the serving cells.

The Value of PCI Planning in LTE

Introduction: LTE network needs not only good RSRP levels, but also high Signal to Interference plus Noise Ratio (SINR). If PCI is not planned well, it will cause high interruption of the Reference Signal (RS). This situation may then result in an effective lack of signal coverage. Physical Cell ID (PCI) is one of the most important cell’s identifier in the wireless network of LTE system. Therefore, PCI planning is one of the most important steps in LTE network planning and construction.

Case Study - KPI Optimization with RF Shaping & Layer Management

Introduction: Spectral efficiency is key to supporting a large subscriber base on limited available spectrum. To maximize the use of spectrum, a mix of footprint optimization or RF shaping is required in conjunction with parameter tuning and feature optimization. Cluster/Area optimization of a LTE and 3G network with macro and oDAS layers requires a complete cell footprint view in order to effectively optimize and maintain performance in a mature wireless network.

Pages

About RFAssurance

RFAssurance is a Telecom Technology Services, Inc department specializing in the support of wireless networks. RFAssurance provides support and consulting for RF RAN and Core Network tools, processes, and results to improve network design, optimization, and general performance. Our managers, engineers and software developers are subject matter experts with various design & optimization tools, database structure, web implementation, and their practical applications. For how we can help support your network, contact us via email at rfassurance@ttswireless.com